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Biological function arises from the dynamic organization of 
proteins in networks of physical interactions. Charting the 
complete protein–protein interaction network (the ‘inter-

actome’) has thus been a long-standing goal of the post-genomic 
era, with a view to understanding cellular physiology and its per-
turbation in disease. Systematic screens have produced large-scale 
interactome maps in humans and model organisms, primarily 
using affinity purification–mass spectrometry (AP–MS) or yeast 
two-hybrid (Y2H) assays1–5. However, these methods are labori-
ous, difficult to scale or apply to non-model organisms and require 
the introduction of protein tags that can disrupt interactions or  
alter localization6,7.

CF-MS has emerged as an alternative strategy for interactome 
mapping that addresses several shortcomings of conventional 
methods8,9. In particular, CF-MS is capable of interactome mapping 
in high throughput, under native cellular conditions, in species not 
amenable to genetic manipulation and even across multiple species 
simultaneously10,11. However, CF-MS is still a relatively young tech-
nique, and the field has yet to arrive at a consensus regarding the 
best way to carry out a CF-MS experiment or analyze the result-
ing data. Many different experimental and analytical approaches 
have been proposed, with relatively little agreement between labo-
ratories. Notably, many of the analytical approaches that have been 
proposed have been tested in only a single dataset12–14, raising the 
question of how well these methods may generalize to other data-
sets, given the diversity of experimental designs employed in the 
field. A related issue is that the development of a computational 
pipeline for CF-MS data entails a series of analytical decisions, 
encompassing strategies for protein quantification, quality con-
trol and preprocessing, scoring elution profile similarity and inte-
grating data from multiple replicates. Benchmarks to date have 
compared entire pipelines as distributed without systematically 
dissecting the impact of each of these decisions in turn, precluding 
a deeper understanding of the optimal methodology for analysis 
of CF-MS data and raising the possibility that some are currently 
made in an arbitrary manner.

We hypothesized that a comprehensive reanalysis of all pub-
lished CF-MS datasets could allow us to conclusively establish best 
practices for both design and analysis of CF-MS studies. We uni-
formly reprocessed a total of 206 published CF-MS experiments, 
collectively spanning >12,000 fractions, to produce a resource with 
>11 million protein quantifications. We then used this resource to 
retrospectively benchmark experimental workflows and systemati-
cally dissect computational approaches to network inference from 
CF-MS data. Finally, we applied optimized analytical strategies to 
predict consensus CF-MS interactomes for 27 species or phyloge-
netic clades throughout the eukaryotic evolutionary tree.

Results
A comprehensive resource of uniformly processed CF-MS data. A 
survey of the literature identified 206 published CF-MS experiments 
with raw data deposited to public proteomic databases (Fig. 1a and 
Supplementary Table 1). These experiments were both biologically 
and technically heterogeneous, occurring in 24 different species 
and employing disparate approaches to fractionation and protein 
quantification (Fig. 1b and Extended Data Fig. 1a). We reasoned 
that this heterogeneity could allow us to retrospectively benchmark 
each facet of experimental design, while simultaneously providing 
an ideal testbed for computational analysis strategies. However, the 
divergent approaches to database search, protein quantification, 
quality control and data pre-processing employed by authors of the 
original studies presented an obstacle to an integrated analysis. We 
therefore reanalyzed the entire resource of 12,683 fractions, cor-
responding to over 27 months of uninterrupted instrument time, 
using MaxQuant15. From a total of 644 million tandem mass spec-
tra, over 151 million peptides were sequenced, yielding 11.7 million 
measurements of protein abundance. On average, 2,386 protein 
groups were quantified in each experiment, corresponding to 16% 
of the organismal proteome (Fig. 1c and Extended Data Fig. 1b,c).

To evaluate the completeness of the integrated dataset, we cal-
culated the recall of protein complexes from the Comprehensive 
Resource of Mammalian Protein Complexes (CORUM) database16 
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in the subset of human and mouse experiments, finding that 84.1% 
of CORUM proteins were detected in at least one fraction (Fig. 1d). 
The remaining 15.9% of undetected proteins were enriched for 
Gene Ontology (GO) terms related to cellular signaling and pro-
liferation, as well as transmembrane protein categories such as G 
protein-coupled receptors and ion channels, suggesting that more 
tailored methods may be necessary to interrogate the undetected 
complexes using CF-MS (Extended Data Fig. 1d). Proteins iden-
tified by CF-MS were also significantly more abundant than the 
proteome average (Fig. 1e and Extended Data Fig. 1e), confirming 
previous reports1,17. Studies employing longer liquid chromatogra-
phy gradients achieved greater coverage of low-abundance proteins, 
but absolute coverage remained low, likely at least in part because 
low-abundance proteins are underrepresented among known pro-
tein complexes (Extended Data Fig. 1f–h).

For the subset of 178 experiments in which processed CF-MS 
chromatograms accompanied the original publication, we com-
pared our own uniformly processed datasets to those analyzed 
by the authors of these studies. The number of high-quality chro-
matograms (that is, with proteins detected in at least five fractions) 
increased by an average of 24% compared to the original datasets, 
supporting our strategy of reanalyzing the raw data (Extended Data 
Fig. 1i). With nearly 12 million measurements of protein abundance 
spanning >12,000 fractions, our systematic reanalysis of published 
CF-MS data is among the largest existing collections of uniformly 
processed proteomic data18–21, providing a resource to understand 
proteome architecture over evolutionary timescales.

A systematic benchmark optimizes analysis of individual CF-MS 
datasets. We next aimed to mine this comprehensive resource of 
CF-MS data to establish optimal strategies for experimental design 

and data analysis. Because the central premise of CF-MS is that pro-
tein complexes should co-elute across a separation gradient, we rea-
soned that superior experimental or analytical approaches should 
exhibit a greater ability to resolve known protein complexes. To for-
malize this notion, we quantified the degree to which known pro-
tein complexes could be recovered based on their observed patterns 
of co-abundance across CF-MS fractions using receiver operating 
characteristic (ROC) curve analysis22 (Fig. 2a). In this framework, 
an area under the curve (AUC) of 1 reflects a perfect ability to iden-
tify known complexes from CF-MS data, whereas an AUC of 0.5 
reflects random performance.

With this quantitative basis for comparison in hand, we first 
set out to establish an optimal pipeline for the analysis of indi-
vidual CF-MS datasets. Perhaps the most central operation in the 
analysis of CF-MS data is to quantify the similarity of two protein 
chromatograms, which in turn provides a basis for the inference 
of protein–protein interactions. More than a dozen metrics have 
been used to quantify chromatographic similarity to date, with 
relatively little agreement between studies (Extended Data Fig. 2a). 
We therefore compared 24 measures of association for their ability 
to resolve known protein complexes in the 67 mouse and human 
datasets23 (Fig. 2b and Supplementary Table 2a). Surprisingly, the 
two most ubiquitous metrics displayed starkly different trends:  
the Pearson correlation was among the top-performing metrics, 
but the Euclidean distance performed no better than random 
chance. The four top-performing metrics (mutual information, dis-
tance correlation, cosine distance and weighted cross-correlation) 
yielded nearly indistinguishable AUCs, raising the possibility of an 
upper limit to protein complex inference (Extended Data Fig. 3a 
and Supplementary Table 3a). To corroborate these trends, we per-
formed a second analysis using GO annotations, rather than known 
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Fig. 1 | A comprehensive reanalysis of published CF-MS data. a, Overview of the 206 CF-MS experiments analyzed in this study. Each cell represents 
one CF-MS experiment. Cells are shaded by the number of fractions collected in each experiment. M. musculus, Mus musculus; X. laevis, Xenopus laevis; 
T. aestivum, Triticum aestivum; C. elegans, Caenorhabditis elegans. b, Fractionation approaches employed in published CF-MS experiments. IEF, isoelectric 
focusing; PAGE, polyacrylamide gel electrophoresis. c, Number of protein groups quantified in each CF-MS experiment (gray lines, individual datasets; blue 
line, mean across all datasets). d, Average coverage of CORUM protein complexes in random samples of 1–60 experiments from the subset of 67 human 
and mouse datasets. e, PaxDb57 consensus protein abundance of human proteins detected and not detected by CF-MS.
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protein complexes, as the ground truth. In lieu of membership in 
the same protein complex, we tested the ability of each metric to 
resolve protein pairs annotated with the same GO term, thereby 
allowing us to analyze all 206 datasets. Similar trends were apparent 
in this analysis, albeit with lower AUCs overall, as expected (Fig. 2c,  
Extended Data Fig. 3b and Supplementary Tables 2b and 3b). 
Notably, there was substantial variability in the top-performing 

methods within any individual dataset (Extended Data Fig. 2b). 
This observation suggests that small-scale analyses may fail to iden-
tify universally optimal methodologies and underscores the value of 
a comprehensive analysis.

Some published approaches deconvolve protein chromatograms 
into individual peaks, either to complement whole-chromatogram 
similarities or as the primary basis for analysis24,25. Peak-centric 
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Fig. 2 | Benchmarking analysis of individual CF-MS experiments. a, Schematic overview of AUC calculation. Min, minimum; max, maximum. b, Recovery 
of known protein complexes in 67 mouse or human CF-MS datasets using 24 different measures of association. Inset text shows the median AUC across 
all CF-MS datasets for each measure of association. Wtd., weighted; ZI, zero-inflated. c, As in b but for proteins annotated with the same GO term in all 
206 datasets. d, Recovery of known protein complexes when treating missing values as missing (NA), treating them as zeros, or imputing with near-zero 
noise. Inset text shows the median AUC across all CF-MS datasets for each treatment of missing values. e, As in d but for proteins annotated with the 
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shows the median AUC across all CF-MS datasets for each chromatogram transformation. g, As in f but for proteins annotated with the same GO term. 
h, Recovery of known protein complexes (top) and percentage of originally quantified proteins (bottom) after filtering profiles not detected in a minimum 
number of fractions. i, Recovery of known protein complexes when filtering proteins not detected in a minimum number of fractions (x axis) and protein 
pairs not jointly detected in a minimum number of fractions (y axis). j, Mean number of protein groups identified (top) and recovery of known protein 
complexes (bottom) for three approaches to label-free quantification implemented in MaxQuant. Inset text shows the median AUC across all label-free 
CF-MS datasets for each approach to protein quantification.
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approaches may be required to resolve interactions between pro-
teins that participate in multiple complexes. However, by consider-
ing fewer fractions, they necessarily lower the amount of evidence 
required to identify co-eluting proteins, which will expectantly 
increase the false positive rate. To quantify this trade-off, we compared 
whole-chromatogram similarities with a peak-centric approach in 
a subset of CF-MS datasets. The performance of the peak-centric 
approach was comparable to the Pearson correlation between whole 
chromatograms, suggesting an acceptable trade-off between false  
positives and false negatives, but was outperformed by several  
mea sures of whole-chromatogram similarity (Extended Data  
Fig. 2c–e). These observations suggest that, while deconvolution- 
based approaches may complement whole-chromatogram similari-
ties, relying exclusively on individual peaks to score interactions 
entails an unnecessary loss of overall accuracy.

We next considered the effects of several preprocessing opera-
tions on protein complex inference. Missing values are ubiquitous 
in CF-MS data and can either be treated as such, replaced with zeros 
or imputed with near-zero noise24. We observed a marked increase 
in the AUC when treating missing values as zeros, suggesting that 
these overwhelmingly correspond to truly absent proteins (Fig. 2d,e, 
Extended Data Fig. 3c,d and Supplementary Table 3c,d). Similarly, 
some analysts have elected to normalize protein chromatograms to 
compensate for differences in absolute protein abundance. However, 
no increase in performance was observed after log transformation 
or quantile normalization of protein chromatograms, suggesting 
that normalization is generally unnecessary (Fig. 2f,g, Extended 
Data Fig. 3e,f and Supplementary Table 3e,f).

We also considered the possibility that these decisions might 
interact combinatorially. For instance, measures of association that 
assume a bivariate normal distribution might perform well only with 
quantile-normalized chromatograms. We therefore enumerated all 
163 valid combinations of measures of association, missing-value 
handling and normalization strategies. The top-performing combi-
nations were broadly consistent with the results of the joint ana-
lysis (Extended Data Figs. 2h,i, 3g,h and 4a,b and Supplementary  
Table 3e,f). However, a number of statistically significant inter-
actions were observed (Supplementary Fig. 1 and Supplementary 
Table 4). For instance, the Euclidean distance achieved better-than- 
random performance only after log transformation of protein  
abundance, indicating that this metric is indeed capable of resolving 
protein complexes but only under specific conditions.

Computational pipelines for CF-MS data typically also include 
a step to filter low-quality chromatograms, with a range of more 
lenient to more stringent approaches proposed. We investigated the 
impact of removing chromatograms with less than some minimum 
number of observations. The AUC reached a peak when filtering 
proteins detected in less than four to five fractions, a threshold at 
which almost 90% of quantified proteins were retained (Fig. 2h  
and Extended Data Fig. 2f), suggesting that co-eluting protein 
complexes can be resolved using relatively few measurements. We 
also performed a similar analysis after filtering protein pairs not 
jointly detected in a minimum number of fractions but observed no 
improvement in performance (Fig. 2i).

Last, because most studies to date have employed label-free 
approaches to protein quantification (Extended Data Fig. 1a), we 
compared the three modes of label-free quantification imple-
mented within MaxQuant. Surprisingly, the performance of the 
more sophisticated MaxLFQ normalization algorithm26 was infe-
rior to the much simpler paradigm of spectral counting27 (Fig. 2j, 
Extended Data Figs. 2g and 3i,j and Supplementary Table 3i,j). This 
may suggest that the patterns of interest in CF-MS data are suffi-
ciently coarse that relatively little quantitative resolution is required. 
Alternatively, the assumption of MaxLFQ that most proteins change 
minimally in abundance between fractions may render it inappli-
cable to CF-MS data. The iBAQ algorithm yielded the highest AUC, 

while also quantifying the greatest number of proteins. This finding 
suggests that iBAQ should be the method of choice for label-free 
CF-MS data, at least among those implemented in MaxQuant, 
although other approaches to summarizing peptide-level intensities 
have been described28,29.

In sum, through a meta-analysis of over 200 CF-MS experiments, 
these analyses establish best practices for protein complex inference 
from individual CF-MS datasets, including label-free protein quan-
tification, quality control, normalization, preprocessing and scoring 
interacting protein pairs.

Design of CF-MS experiments. Next, we turned our attention to 
the design of CF-MS experiments. We began by considering two of 
the most immediate questions that confront any investigator wish-
ing to carry out a CF-MS study: how many biological replicates to 
collect and how many fractions to collect from each replicate. To 
address the latter question, we downsampled chromatograms from 
published datasets to a fixed number of fractions. As expected, the 
downsampling analysis indicated that collecting more fractions 
yielded a higher AUC (Fig. 3a). However, the rate of this increase 
plateaued rapidly with the addition of new fractions. Only mar-
ginal improvement was observed with more than ~40 fractions 
per replicate. This is remarkable, given that over 80% of experi-
ments conducted to date have collected more than 40 fractions 
(Supplementary Table 1). We observed similar trends when varying 
the measure of association, using GO as the ground truth, dividing 
experiments by separation method and when sampling windows of 
adjacent fractions (Extended Data Fig. 5).

This finding implied that, rather than deeply profiling a small 
number of replicates, investigators with a fixed budget of mass spec-
trometry resources should consider profiling many replicates with 
fewer fractions. To quantitatively assess this trade-off, we repeated 
our downsampling analysis with fractions sampled from between 
one and five different replicates. Collecting additional replicates 
increased the AUC much faster than collecting additional fractions 
(Fig. 3b and Extended Data Fig. 6). Moreover, the effect had not sat-
urated even with five biological replicates, suggesting that network 
inference overwhelmingly benefits from collecting many indepen-
dent pictures of the same biological system, rather than a smaller 
number of high-resolution pictures.

Although most published CF-MS studies have employed 
label-free approaches to protein quantification, a handful have used 
metabolic or chemical labeling strategies8,17,30–33, among which stable 
isotope labeling using amino acids in cell culture (SILAC) has pre-
dominated. For the subset of SILAC datasets, we compared protein 
complex recovery using SILAC ratios to the iBAQ intensities from 
individual isotopolog channels. As expected, SILAC labeling did 
indeed increase the AUC, but the effect was modest and variable, 
falling short of statistical significance (P = 0.17, paired t-test; Fig. 3c 
and Extended Data Fig. 7a). Conversely, the requirement of protein 
detection in both isotopolog channels substantially decreased the 
number of proteins that could be quantified (P = 1.07 × 10−10; Fig. 3c  
and Extended Data Fig. 7a). Thus, the increase in quantitative accu-
racy afforded by metabolic labeling in CF-MS may not justify the 
concomitant loss of proteome coverage.

Finally, we asked whether our retrospective analysis provided 
strong support for any particular fractionation technique. Size 
exclusion chromatography (SEC) and native polyacrylamide gel 
electrophoresis (N-PAGE) emerged as the top-performing meth-
ods, with the former also affording the greatest proteome cover-
age (Fig. 3d, Extended Data Fig. 7b–h and Supplementary Table 5).  
Isoelectric focusing and ion-exchange chromatography (IEX) 
exhibited less ability to resolve known protein complexes. We 
obtained similar results when computing the AUC for each indi-
vidual complex in turn, instead of over all intracomplex and inter-
complex interactions jointly (Extended Data Fig. 7i). However, 
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many complexes were consistently resolved best by specific tech-
niques, suggesting substantial complementarity between methods 
(Extended Data Fig. 7j,k).

In sum, these analyses reveal best practices for the design of 
CF-MS studies, emphasizing the importance of biological replication 
and supporting SEC and N-PAGE as chromatographic approaches.

Integration of CF-MS replicates. Our analyses to this point have 
focused on individual CF-MS experiments. In practice, however, 
investigators generally seek to combine information from multiple 
CF-MS replicates during network inference. Supervised machine 
learning has emerged within the field as the standard strategy to this 
end. In this paradigm, a classifier is trained to identify interacting 
protein pairs, using features computed from each replicate as input 
and a training set constructed from known protein complexes. The 
classifier is trained in cross-validation to avoid leaking information 
between the training and test data and to allow for the possibility 
that some known complexes may not be assembled in a given data-
set. This workflow entails a number of analytical decisions, includ-
ing the structure of the cross-validation procedure, the number and 
identities of features computed for each replicate and the choice of 
classifier. We sought to dissect the contribution of each decision to 
network inference.

We first contemplated the design of the cross-validation proce-
dure itself. Protein complexes can be split into folds that are disjoint 
with respect to either pairwise interactions or individual protein 
subunits, as illustrated in Extended Data Fig. 8a. In human CF-MS 
datasets, splitting by protein pairs consistently yielded an improved 
AUC compared to splitting by proteins in cross-validation, but this 
improvement vanished in a held-out set of protein complexes (Fig. 4a  
and Extended Data Fig. 8b). This observation strongly suggests  
that splitting by protein pairs leads to inflated estimates of network 
quality in cross-validation. We thus split the reference complexes by 
proteins for all remaining experiments.

We next sought to confirm that our comparison of measures 
of association in individual datasets (Fig. 2) would generalize to 
the integration of multiple CF-MS datasets. We performed net-
work inference from combinations of two to six CF-MS datasets, 
using features derived from each of the 24 measures of association  
in turn. Measures of association exhibited similar performance  
in the single-dataset and multi-dataset settings, albeit with some 

discrepancies: for instance, our single-dataset analysis appeared to 
overestimate the performance of the mutual information, while under-
estimating that of the Pearson correlation (Extended Data Fig. 9a).

We also asked whether we could identify combinations of features 
with non-additive (that is, synergistic or antagonistic) contributions 
to classifier performance. We trained classifiers on all possible pairs 
of features and identified several measures of association with repro-
ducible synergistic or antagonistic interactions (Extended Data  
Fig. 9b–f). Many of the synergistic interactions combined measures 
of correlation in protein abundance with metrics based on pro-
tein co-occurrence in overlapping fractions, suggesting that these 
two categories of features provide largely complementary sources 
of information. We also identified a strong synergistic interaction 
between the Pearson correlation and the Euclidean distance, which 
may explain the success of previous studies that have employed both 
measures for network inference (Extended Data Fig. 2a), despite the 
Euclidean distance itself yielding rankings that are little better than 
random (Fig. 2b).

To better understand the impact of the features provided to 
the classifier as input, we compared classifiers trained on either a 
selection of the top-performing features in individual replicates 
(Extended Data Fig. 4) or an equivalent number of randomly 
selected features. As expected, classifiers trained on top-performing 
features exhibited superior performance (Fig. 4b and Extended 
Data Fig. 8c). However, the difference was attenuated with large 
numbers of features or datasets when using a random forest clas-
sifier (Extended Data Fig. 8d), implying that, in data-rich regimes, 
more powerful classifiers can recover the same biological signal 
from noisier inputs. Interestingly, classifiers trained on the features 
used by PrInCE24 achieved performance comparable to that of those 
trained on an equivalent number of top-performing features, sug-
gesting that the precise identity of the features is not critical for 
network inference as long as a sufficient number of reasonably dis-
criminative features are provided.

We also asked whether improved performance could be achieved 
by merging all CF-MS experiments into a single combined matrix 
before calculating features but found that this had a uniformly nega-
tive effect (Extended Data Fig. 8e). Calculating features separately 
for each replicate may allow the classifier to assign higher weights 
to higher-quality datasets while downweighting noisy data. We 
additionally investigated the effect of imputing missing values in 
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the feature matrix, which commonly occur when a protein is not 
quantified in one or more replicates. Although some classifiers can 
naturally handle missing values, median imputation consistently 
improved performance (Extended Data Fig. 8f).

Next, we examined the number of features computed for each 
replicate in more detail. Providing more features to the classi-
fier increased the AUC, but the effect saturated rapidly, with only 
marginal increases above five features (Fig. 4c and Extended Data  
Fig. 8g). Moreover, the effect diminished as the number of replicates 
increased. With many replicates, a single top-performing feature 
was sufficient to achieve nearly optimal performance, and the total 
number of replicates had a much stronger impact on network infer-
ence. Interestingly, the optimal choice of classifier was dependent 
on the total amount of data available (Fig. 4d and Extended Data 
Fig. 9h). With many replicates, the random forest performed best 
and was largely insensitive to the identity of features provided as 
input. Conversely, in smaller collections of CF-MS data (for exam-
ple, with two to three replicates), the simpler naive Bayes classifier 
yielded the highest AUC, but only when trained on optimal features. 
These observations imply that different strategies should be applied 
to network inference from small-scale CF-MS studies (for instance, 
with two to four replicates) and large compendia of CF-MS data.

Our analyses of individual datasets suggested that, of the two 
main approaches for cellular lysate fractionation that have been 

applied to human cells (that is, SEC and IEX), SEC generally 
achieved better resolution of known protein complexes. However, 
some studies have argued that multiple, orthogonal separations are 
necessary to minimize chance co-elution9,11. To test this hypothesis, 
we inferred networks from combinations of SEC and IEX datasets 
in varying ratios (Fig. 4e and Extended Data Fig. 8i). When integrat-
ing five or fewer datasets, network inference was optimized when 
using exclusively SEC data. However, with six or more datasets, a 
combination of SEC and IEX datasets was necessary to maximize 
the AUC. This observation supports the view that large-scale inter-
actome mapping projects must integrate multiple fractionation 
approaches to achieve optimal accuracy.

One of the most promising applications of CF-MS is to map the 
interactomes of species not amenable to conventional techniques 
such as AP–MS or Y2H. However, it is currently unclear how many 
CF-MS experiments are needed to achieve saturating coverage of a 
given interactome. To address this question, we inferred networks 
from random samples of 2–40 human CF-MS datasets (Fig. 4f and 
Extended Data Fig. 10a). Performance saturated after approximately 
15–20 datasets, suggesting that roughly a dozen CF-MS experi-
ments are sufficient to produce an initial interactome map for a 
given organism. A related issue that may arise in less-studied organ-
isms is that relatively few protein complexes are known, limiting the 
size of the training set. To evaluate the impact of training set size,  
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we performed network inference after downsampling the CORUM 
database. The performance of naive Bayes classifiers saturated rapidly,  
with the AUC reaching 98% of its maximum value with only 154 
proteins in the training set (Fig. 4g and Extended Data Fig. 10b). By 
contrast, random forest classifiers required 904 proteins to reach the 
same value. This finding supports the notion that more powerful 
nonlinear classifiers are most useful in data-rich settings.

In sum, these analyses establish an optimal protocol for integra-
tion of data from multiple CF-MS replicates. Notably, our results 
expose two distinct regimes in network inference from CF-MS 
data and reveal different optimal workflows for low-data and data- 
rich scenarios.

A consensus human CF-MS interactome. Having assembled a 
comprehensive resource of CF-MS data and established an optimal 
workflow for data analysis, we next asked whether meta-analysis 
of all published datasets could produce a draft-quality map of the 
human interactome. Integration of all 46 published human CF-MS 
experiments, using the optimized methodology for network infer-
ence defined by our benchmarks, identified a total of 47,575 inter-
actions at 50% precision (Fig. 5a and Supplementary Fig. 2a,b). To 
place this performance in context, we calculated the precision and 
recall of five recent large-scale human interactome screens using 
AP–MS or Y2H techniques1–5. Evaluating these screens on identical 
sets of true positive and true negative interactions, we found that our 
meta-analysis recovered more interactions than all but one of the 
five screens at equivalent precision and 90% as many as the excep-
tion, the BioPlex 2 network (Fig. 5b). Reassuringly, 31% of the inter-
actions in the consensus CF-MS interactome had been previously 

identified by at least one small-scale or high-throughput experi-
ment, confirming its ability to recapitulate known biology (Fig. 5c). 
However, the remaining 69% were not found in any protein–pro-
tein interaction database, indicating that large-scale integration of 
CF-MS data can expand even well-studied interactomes. Similarly, 
our consensus CF-MS interactome overlapped significantly with 
networks derived from the integration of CF-MS data with other 
proteome-scale datasets9,34,35 (P < 10−15, hypergeometric test), but  
the majority of interactions were again new (Supplementary  
Fig. 2c–e). The observed degree of overlap is consistent with the  
fact that these previous efforts drew on largely or entirely distinct 
collections of CF-MS data, in addition to numerous external sources 
of information (Supplementary Fig. 2f).

To evaluate the biological relevance of the consensus CF-MS 
interactome, we asked to what extent proteins implicated in 
the same biological processes tended to physically interact. 
Remarkably, the functional coherence of the CF-MS interactome, 
as quantified by the AUC36 (Methods), was substantially higher 
than that of human interactomes derived from AP–MS or Y2H 
(Fig. 5d). Similarly, we evaluated the degree to which interacting 
protein pairs tend to display correlated patterns of abundance in 
large-scale proteomic datasets or colocalize to the same subcellu-
lar compartments, observing excellent performance by both mea-
sures20,37–39 (Fig. 5e,f and Supplementary Fig. 2g,h). In sum, these 
analyses provide strong support for the notion that large-scale 
integration of CF-MS data can produce interactome maps of qual-
ity comparable to or higher than that of systematic AP–MS or Y2H 
screens, and define a draft-quality map of the human interactome 
by CF-MS.
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CF-MS interactomes throughout the evolutionary tree. The suc-
cess of our efforts to reconstruct a draft human interactome through 
meta-analysis of published CF-MS experiments compelled us to ask 
whether this approach would extend to the other species repre-
sented in our compendium. Accordingly, we performed additional 
meta-analyses of CF-MS interactomes for 17 species profiled by at 
least three experiments. This approach identified between 1,595 
(Drosophila melanogaster) and 57,682 (Trypanosoma brucei) inter-
actions in each species (Fig. 6). For many of these species, these net-
works represent the first attempts to assemble systematic, unbiased 
interactome maps, complementing literature-curated resources 
derived from small-scale experiments40.

We also asked whether we could combine information from 
multiple species to infer consensus interactomes for entire phy-
logenetic clades, such as mammals, deuterostomes or even all 
eukaryotes. We mapped proteins to orthogroups and applied an 
identical approach to infer networks for nine internal nodes in 
the phylogenetic tree (Fig. 6). Meta-analysis of up to 199 CF-MS 
experiments inferred between 24,890 (BOP clade) and 51,998 
(Eukaryota) evolutionarily conserved interactions in each clade. 
Both the functional coherence of the networks and the total num-
ber of interactions that could be confidently inferred appeared 
to saturate with the addition of new species and experiments, 
raising the possibility of an upper bound to the performance of 
cross-species interactome mapping under current CF-MS experi-
mental workflows (Supplementary Fig. 3a,b).

To probe the evolutionary conservation of the predicted interac-
tions, we computed the overlap between the consensus CF-MS inter-
actome predicted for humans and their parent clades, from placental 
mammals to eukaryotes. As expected, the conservation of human 
interactions decreased over evolutionary time (Supplementary 
Fig. 3c). However, almost two-thirds (65.6%) of human inter-
actions were conserved in the eukaryote meta-interactome. By 
contrast, 18.9% of human interactions were not conserved in the 
Euarchontoglires network; some of these may represent candi-
date human-specific interactions. We observed similar trends for 
the mouse and Arabidopsis interactomes (Supplementary Fig. 3c). 

Thus, our 27 eukaryotic CF-MS interactomes collectively provide 
a hypothesis-generating resource to investigate network evolution.

discussion
CF-MS has dramatically increased the throughput of interactome 
mapping, but there is little agreement within the field on the best 
way to carry out an experiment or analyze the resulting data. Here, 
we have carried out a comprehensive reanalysis of more than 200 
CF-MS experiments, assembling one of the largest collections of 
uniformly processed proteomic data in existence. We then used this 
resource to systematically optimize both experimental and compu-
tational workflows for CF-MS. We provide an interactive web appli-
cation to facilitate exploration of the complete dataset, available at 
http://cf-ms-browser.msl.ubc.ca.

A number of specific recommendations for the design of CF-MS 
experiments emerge from our analysis. In several cases, these rec-
ommendations deviate from what is currently standard practice 
in the field. One particularly striking finding is that little benefit 
is conferred by collecting more than 40 fractions from any given 
biological replicate. On the other hand, collecting additional bio-
logical replicates had a profound impact on network inference. 
These findings are noteworthy, given that the dominant para-
digm to date has been to collect many fractions—in some cases 
more than 100—from a relatively small number of replicates. Our 
results suggest a shift away from this paradigm: that instead col-
lecting lower-resolution profiles from many independent samples 
could allow higher-confidence network inference at equivalent cost. 
Surprisingly, our comparison of approaches to protein quantifi-
cation indicated that the improved resolution afforded by SILAC 
labeling did not markedly improve network inference and was coun-
terbalanced by a decrease in proteome coverage. In this respect, it 
is important to note that our analysis focused on interactome map-
ping from CF-MS under a single condition. Metabolic or chemical 
labeling strategies have distinct advantages for mapping rearrange-
ments in the interactome through comparative CF-MS studies. 
Notably, by enabling sample multiplexing during chromatography, 
labeling strategies provide the only means to decouple technical 
variability associated with protein complex elution from biological 
variability in protein complex assembly. Last, our comparison of 
approaches to cellular lysate fractionation has the important caveat 
that each dataset cannot be used as its own internal control, as in 
the downsampling and protein-quantification analyses. We there-
fore cannot exclude the possibility that the observed trends are con-
founded by differences in the biological systems under investigation 
or technical differences in the mass spectrometry. Nonetheless, this 
comparison provides some level of evidence that SEC or N-PAGE 
should be preferentially considered as methods for protein complex 
separation. N-PAGE is particularly advantageous for the study of 
membrane interactions31,41, although published N-PAGE datas-
ets have achieved lower proteome coverage than those employing 
SEC, perhaps due to lower sample recovery. On the other hand, 
each separation method was able to best resolve at least a handful 
of known protein complexes, and integration of different separation 
methods was necessary to optimize network inference from collec-
tions of six or more CF-MS datasets. These findings indicate that 
the approaches to fractionation in current use yield at least partially 
complementary pictures of protein complex assembly.

The biological and technological heterogeneity of the resource 
we assembled also provided an ideal testbed for data analysis strat-
egies. To date, published comparisons of computational tools for 
CF-MS data have compared entire pipelines as distributed12–14. 
Here, instead of treating these tools as black boxes, we sought to 
break them down into their constituent operations, in order to 
distinguish successful from unsuccessful strategies at each step 
of analysis in turn. This effort allowed us to systematically define 
the components of an optimal pipeline for network inference from 
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CF-MS data. Notably, we identified two distinct regimes of classifier 
performance in CF-MS data integration. In the low-data regime, 
simple linear classifiers achieved the best performance but were 
highly sensitive to the features provided as input. Conversely, in the 
data-rich regime, nonlinear classifiers dominated and were insensi-
tive to feature selection. We provide an R package implementing 
all of the methods evaluated in this study, available from GitHub at 
https://github.com/fosterlab/CFTK. CFTK complements existing, 
‘one-size-fits-all’ approaches to supervised analysis of CF-MS data, 
such as PrInCE24 and EPIC14, by providing a flexible toolkit that can 
be used to implement analytical workflows tailored to the data at 
hand. However, a limitation of CFTK is that this greater flexibility 
comes at the cost of a somewhat higher barrier to entry than that of 
existing pipelines.

We applied the optimized computational methodology that 
emerged from our systematic benchmarks to the corpus of reana-
lyzed CF-MS data and predicted consensus CF-MS interactomes 
for 27 species or clades. Using a precision cutoff of 50%, we gener-
ated a resource comprising more than 700,000 predicted interac-
tions. Taken at face value, this threshold implies that up to half 
of all interactions in these networks represent false positives. 
However, we believe that this is a highly conservative estimate 
of network quality. Like others in the field10,14, we treat pairs of 
CORUM proteins found in different complexes as true negatives. 
The number of true negative pairs thus grows quadratically with 
the number of proteins in CORUM, and consequently these out-
number true positives by a large margin. Moreover, at least some 
of these ostensibly true negative pairs are likely to truly interact, in 
pairwise interactions or protein complexes that are as-of-yet undis-
covered or simply missing from the CORUM database. Estimating 
the absolute error rate of protein–protein interaction networks is 
a difficult problem that has attracted extensive discussion42,43. In 
view of these caveats, we caution that the precision is unlikely to 
provide an accurate estimate of the absolute error rate of either our 
consensus CF-MS interactome or published networks. Instead, we 
believe that the most relevant outcome of our analysis is instead 
the relative performance of the consensus human CF-MS interac-
tome in comparison with that of other large-scale screens. When 
evaluated on the same terms, we found that integration of CF-MS 
experiments recovered more interactions at equivalent precision 
than all but one of these, the BioPlex 2 network, which integrated 
almost 6,000 AP–MS experiments. However, while our computa-
tional analyses substantiate the quality of the inferred networks 
at a systems level, we also caution users of this resource that any 
particular individual interaction should be regarded as putative 
until confirmed experimentally using an orthogonal technique. 
Such experimental validation may be challenging in biological 
systems not amenable to conventional approaches, such as affin-
ity purification. Looking toward the future, integration of CF-MS 
with other mass spectrometric assays, such as cross-linking mass 
spectrometry or thermal proteome profiling, may provide a 
means to increase confidence in individual interactions outside of 
well-studied model systems11.

Our analysis framework closely followed what has emerged as 
the standard workflow for CF-MS data analysis, in which supervised 
machine learning is applied to predict a sparse, unweighted interac-
tion network from CF-MS data. Two deviations from this workflow 
are worth noting. First, previous efforts to integrate large com-
pendia of CF-MS data9,10,34,35 have applied graph-based clustering 
algorithms to the inferred networks, in order to assemble pairwise 
interactions into multi-protein complexes. We recently reported that 
these clustering algorithms are highly sensitive to small amounts of 
noise in the network44. In extreme cases, a minute perturbation to 
the underlying interaction network could produce a ~50% change 
in the complexes detected. We observed similar results across many 
different interaction networks and clustering algorithms, suggesting 

that this instability is a fundamental property of these approaches. 
Moreover, we observed similar instability when injecting noise 
directly into the underlying chromatograms. Because the process 
of CF-MS data acquisition is inherently noisy, we have opted not 
to perform such a clustering analysis here. However, our resource 
of predicted interactomes provides a fertile ground to develop and 
evaluate new, more robust clustering approaches for protein com-
plex detection. Second, recent studies have proposed novel ana-
lytical frameworks, based either on hierarchical clustering to infer 
protein complexes directly from elution profiles without an inter-
mediate network-inference step13,45 or on the targeted investigation 
of known complexes, eschewing de novo inference of interactions 
or complexes entirely25,46. Because these approaches rely on many 
of the same basic operations evaluated here (for instance, prepro-
cessing elution profiles and scoring their similarity), our findings 
should also apply to the development of these and related frame-
works. More broadly, we anticipate that our resource of systemati-
cally reanalyzed CF-MS data can help spur the development of new, 
‘network-free’ approaches to protein complex inference.

Our study defines a number of resources for the CF-MS and 
broader proteomic communities. First, our compendium of uni-
formly processed CF-MS data provides an unprecedented plat-
form to develop and benchmark new tools for network inference. 
Whereas previous evaluations of computational strategies for 
CF-MS data have considered at most a handful of datasets12–14,47,48, 
this data will empower developers to test their tools in a large 
number of datasets and thereby increase rigor within the field 
by limiting overfitting to individual datasets. More broadly, this 
resource can be used to test many different biological hypotheses 
about protein complex evolution or stoichiometry. Second, this 
compendium includes several comparative CF-MS studies31,49–51, 
providing a platform to develop and test new computational 
approaches for differential analysis of CF-MS data across biologi-
cal conditions. Third, because a wealth of knowledge is available 
about the structure of biological networks, this dataset can also 
provide a testbed for computational proteomics more broadly, 
in situations where no task-specific gold standard is available. As 
one example, an approach to protein inference that improves the 
recovery of known protein complexes is likely to also perform well 
in other settings. We provide complete peptide-level chromato-
grams for all 206 experiments in our Proteomics Identification 
Database (PRIDE) deposition as a resource to support the 
development of more accurate approaches to label-free protein 
quantitation25,46 or for the identification of proteoform-specific 
interactions31,52. Finally, our efforts to infer CF-MS interactomes 
in 27 species or clades provide systematic protein–protein interac-
tion maps for several understudied organisms, and a resource to 
understand the evolution of eukaryotic cell biology. This resource 
is complementary both to experimental interactome maps gen-
erated using other high-throughput techniques and efforts to 
computationally predict protein–protein interaction networks 
from sequence or structural features53–56. The complete resource, 
including all of the data from intermediate processing steps and 
the source code used to generate it, is available at https://fosterlab.
github.io/CF-MS-analysis.
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Methods
MaxQuant searches. Through an extensive review of the literature, we identified 
a total of 206 published CF-MS experiments for which raw mass spectrometric 
data were available from proteomic repositories as of May 2020. Raw data were 
downloaded from the MassIVE or PRIDE repositories, and experimental designs 
were manually curated to group files into experiments and fractions. Instrument 
time for each file analyzed was calculated from Thermo RAW files using RawTools 
(version 2.0.2)58 and manually retrieved from the corresponding publications 
for other formats. The complete list of files analyzed in this study is provided in 
Supplementary Table 1b.

MaxQuant (version 1.6.5.0) was used to search each experiment against the 
UniProt complete proteome for the corresponding species, including unreviewed 
accessions and isoforms, after removal of proteins less than ten amino acids 
long and supplementation with a list of common contaminants provided by 
MaxQuant. For a subset of experiments from the accession PXD009039 profiling 
mouse erythrocytes infected with Plasmodium berghei, the proteome searched 
was a concatenation of the P. berghei and mouse proteomes, with mouse proteins 
subsequently discarded for downstream analysis. Search parameters varied across 
experiments, but, in general, carbamidomethylation of cysteine was set as a fixed 
modification, while protein N-terminal acetylation and methionine oxidation 
were set as variable modifications, and trypsin cleavage was used with up to two 
missed cleavages. For some datasets, more specific settings were used, including 
replacing carbamidomethylation with N-ethylmaleimide on cysteines as a fixed 
modification, LysC cleavage or modifying the multiplicity for SILAC and dimethyl 
labeling experiments. Code used to download the raw data, create ‘mqpar.xml’ files 
and carry out MaxQuant searches is available from GitHub at https://github.com/
skinnider/CF-MS-searches. MaxQuant outputs are available from PRIDE under 
the accession PXD022048.

Quality control. MaxQuant outputs (‘proteinGroups.txt’ files) were preprocessed 
by removing potential contaminants, reverse hits and proteins identified only 
by peptides carrying one or more modified amino acids59. Total numbers of 
tandem mass spectra and sequenced peptides were obtained from MaxQuant 
‘summary.txt’ files. Coverage of protein complexes was assessed with respect to 
the core set of protein complexes from CORUM version 3.0 (file ‘coreComplexes.
txt’) with redundant entries removed16. Analysis of GO terms enriched among 
complex proteins detected versus not detected by CF-MS was performed using the 
conditional hypergeometric test60 implemented in the ‘GOstats’ R package61. Mouse 
and human whole-organism protein-abundance estimates in parts per million 
were obtained from PaxDb (version 4.1)57. To evaluate coverage of low-abundance 
proteins, we divided human proteins into three bins based on protein-abundance 
estimates from PaxDb. We then removed proteins not detected in any human 
CF-MS dataset in order to mitigate the influence of proteins not compatible with 
CF-MS (for instance, proteins that do not participate in any macromolecular 
complexes). Then, for each dataset, we computed the mean proportion of fractions 
in which proteins from each bin were quantified to obtain a measure of coverage 
for lowly, moderately and highly abundant proteins.

Analysis of individual CF-MS experiments. A total of 165 analytical pipelines were 
evaluated for their ability to recover known protein complexes within individual 
experiments from the subset of 67 human and mouse CF-MS experiments, or 
protein pairs annotated with the same GO term across the complete set of 206 
experiments. Each pipeline consisted of a measure of association used to quantify 
the similarity of each chromatogram pair, a strategy for handling missing values 
and, optionally, a transformation or normalization of the chromatograms. The 24 
measures of association evaluated here included 17 previously evaluated in the 
context of coexpression network inference from single-cell transcriptomics23, as 
well as seven measures specifically proposed for the analysis of CF-MS data or 
‘-omic’ data more generally. These included the Bayesian correlation62, Bray–Curtis 
distance and weighted cross-correlation, all of which have been employed to 
analyze CF-MS data in previous studies; unsupervised machine learning methods 
including treeClust and GENIE3 (ref. 63), which have been proposed for protein 
co-regulation analysis;20 the profile correlation, which has been applied to analyze 
AP–MS data5; and the distance correlation64, which has been proposed for the 
analysis of high-throughput datasets more generally65,66. The 17 previously evaluated 
metrics were implemented as in the ‘dismay’ R package23. The Bayesian correlation 
was calculated using the R script accompanying the original publication62. The 
Bray–Curtis distance was calculated using the ‘vegan’ R package67. The weighted 
cross-correlation was calculated using the ‘wcc’ function from the ‘wccsom’ R 
package as previously described9. The distance correlation was calculated using 
the ‘Pigengene’ R package68. Missing values were either treated as missing (NAs), 
treated as zeros, or imputed with random, near-zero noise using the ‘clean_profile’ 
function from the ‘PrInCE’ R package24. Chromatograms were optionally log 
transformed or quantile normalized using the ‘normalize.quantiles’ function from 
the ‘preprocessCore’ R package. A subset of combinations were discarded involving 
metrics that were unable to handle missing values, such as GENIE3, or for which 
zeros and missing values were interpreted identically, such as the Jaccard index.

To evaluate the ability of each approach to recover known protein complexes, 
we implemented a framework based on ROC analysis22. We focused our 

evaluation at the level of pairwise interactions, rather than at the level of protein 
complexes, because we have found that the graph-based clustering approaches 
used to infer protein complexes from pairwise interactions are highly sensitive 
to noise at both the protein chromatogram and interaction network levels44. By 
comparison, inference of pairwise interactions was substantially more robust. We 
computed the area under the ROC curve (AUC), which reflects the probability 
that any arbitrary true interaction will be ranked higher than any arbitrary 
non-interacting pair. An AUC of 0.5 therefore reflects random guesses, with 
true interactions and non-interacting pairs ranked equally, while an AUC of 1.0 
reflects perfect discrimination of interacting and non-interacting pairs. We used 
protein complexes from the CORUM database16 to label true positive and true 
negative pairs. Protein pairs in the same complex were labeled as true positives, 
and protein pairs in different complexes were labeled as true negatives. Protein 
groups mapping to more than one gene symbol and proteins not belonging to 
any complex were discarded for this analysis. Notably, while some protein pairs 
in different complexes in the CORUM database may in fact represent truly 
interacting pairs, we reasoned that this definition of true negatives would be 
consistent with those employed by most studies in the field of CF-MS to date and 
would provide the most representative and unbiased collection of true negatives 
given our inherently incomplete understanding of non-interacting protein pairs 
across the human proteome. Alternatively, membership in the same GO slim term 
was used to label positive pairs. GO annotation files for UniProt proteomes were 
obtained from the GOA FTP server (http://ftp.ebi.ac.uk/pub/databases/GO/goa/
proteomes/). The three root nodes (biological process, molecular function and 
cellular compartment) were removed, and the remaining GO terms were filtered 
to exclude terms annotated to fewer than ten or more than 100 proteins in order 
to mitigate the influence of very broad or specific terms. Protein groups with 
discordant mappings (for example, with one protein annotated with the GO term 
of interest but the other protein not annotated with the GO term of interest) were 
discarded. AUCs for each individual GO slim term were then summarized to the 
median AUC over all GO slim terms. iBAQ protein quantitation was used for 
all ROC analyses. To produce the heatmap shown in Extended Data Fig. 2b, the 
mean AUC over all missing-value strategies and chromatogram transformations 
was calculated for each measure of association in each dataset. The mean AUCs 
were then ranked within each dataset to produce a dataset-specific ranking of each 
measure of association.

We used several different approaches to perform statistical comparisons of 
the 24 measures of association. First, we performed univariate statistical analyses 
to test for differences in overall performance between each pair of metrics. We 
used the nonparametric Brunner–Munzel test69, as implemented in the ‘lawstat’ 
R package, to test for the stochastic equality of the AUCs obtained using each 
measure of association. We carried out similar univariate analyses using the 
Brunner–Munzel test to compare approaches to missing-value handling and 
chromatogram normalization. Second, we observed that some measures of 
association achieved good performance only after specific preprocessing strategies 
were applied. We therefore performed a second univariate analysis, retaining 
only AUCs derived from the optimal preprocessing pipeline for each measure of 
association (that is, the combination of missing-value handling and chromatogram 
normalization that yielded the highest median AUC). Third, to identify statistically 
significant interactions between preprocessing strategies and measures of 
association, we performed a multivariable statistical analysis, fitting a linear model 
to the protein AUC, including terms for the measure of association, missing-value 
handling, chromatogram normalization and interactions between them. The four 
measures of co-occurrence studied here (that is, the Jaccard index, Hamming 
distance, Dice coefficient and co-dependency index) are invariant to preprocessing 
decisions and were omitted from this analysis. Finally, to compare approaches to 
label-free protein quantification, we used the paired Brunner–Munzel test70, as 
implemented in the ‘nparcomp’ R package, to compare the AUCs derived from 
each dataset after quantifying protein abundance in each fraction with one of three 
different algorithms.

To compare peak-centric and whole-chromatogram similarities, we used 
the R implementation of PrInCE71 to deconvolve chromatograms into a mixture 
of Gaussians and then computed the co-apex score (defined as the Euclidean 
distance between the closest (µ, σ) pairs, where µ and σ are parameters of Gaussians 
fitted to any two chromatograms24) as a representative peak-centric metric. The 
performance of approaches to chromatogram deconvolution is highly sensitive 
to small anomalies in the order of the fractions (for example, missing fractions, 
sample mix-ups), and the procedure implemented in PrInCE is incompatible 
with sequential fractionation approaches. To put peak-centric approaches on the 
best possible footing and avoid spuriously underestimating their performance, 
we therefore limited our analysis to a subset of 20 CF-MS datasets generated in 
our own laboratory, for which we can be entirely confident about the application 
of the deconvolution procedure. We then repeated the ROC analysis as described 
above using the co-apex score to rank co-eluting protein pairs. Because not all 
chromatograms are amenable to deconvolution, we recalculated the AUC of all 
24 other measures of association for only the proteins that could be fitted with a 
mixture of Gaussians (r2 ≥ 0.5) to compare all methods on the same set of proteins.

To evaluate the impact of other preprocessing decisions on CF-MS data 
analysis, we performed identical ROC analyses after filtering proteins quantified in 
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less than 1–20 fractions and after filtering protein pairs co-occurring in less than 
one to ten fractions. These analyses were carried out with missing values treated as 
zeros and without transforming or normalizing chromatograms, using either the 
Pearson correlation or the mutual information as the measure of association.

Comparison of experimental designs. To evaluate the impact of the number of 
fractions collected from a given replicate, we downsampled published datasets 
to between five and 50 fractions and then repeated the ROC analysis described 
above. Only experiments that originally profiled at least 50 fractions were included. 
This analysis was performed with either the Pearson correlation or the mutual 
information as the measure of association, missing values treated as zeros and no 
transformation of the chromatograms. We additionally performed downsampling 
of adjacent fractions by passing a sliding window of fixed width along the 
chromatograms and retaining the maximum correlation for each protein pair over 
all windows, observing similar results.

To quantify the impact of biological replication, an analogous analysis was 
performed for a set of nine CF-MS experiments with at least three biological 
replicates, in which fractions were sampled at random from between one and 
five replicates. Protein groups were mapped to gene symbols to enable matching 
across replicates. For gene symbols that mapped to more than one protein group, 
only the chromatogram with the fewest missing values was retained. Duplicated 
chromatograms (arising from the reverse case, in which a single protein group 
mapped to more than one gene symbol) were discarded at random. For each 
parameter combination (that is, for a given number of fractions and number of 
biological replicates), separate ROC analyses were performed for ten random 
samples of fractions, and the mean AUC over all ten samples was calculated. 
Because individual experiments displayed very different intrinsic powers to 
resolve known protein complexes, AUCs were rescaled to the range [0, 1] for each 
experiment separately to enable comparison.

To compare label-free and isotopic labeling approaches to protein 
quantification, iBAQ intensities were extracted from medium and/or heavy 
channels for a total of 20 SILAC experiments. These were then compared to the 
medium (heavy) over light ratios, using SILAC internal standards, for their ability 
to resolve known protein complexes or proteins annotated with the same GO term 
as described above. A smaller number of dimethyl labeling datasets (n = 3) were 
discarded from this analysis on the grounds that confident conclusions could not 
be drawn about this technique from such a small number of replicates, each with 
relatively few proteins quantified. Statistical comparisons of iBAQ and SILAC 
versions of the same dataset were performed using a paired t-test.

For the comparison of protein complex fractionation approaches, experiments 
that combined N-PAGE or SEC with cross-linking, as well as two experiments 
employing sucrose gradients, were excluded. In addition to computing the 
AUC over all intracomplex and intercomplex interactions in CORUM, we 
also performed separate ROC analyses for each individual complex in turn, 
analogously to ROC analyses performed for proteins annotated with the same GO 
term described above. We limited our comparison to the set of complexes that 
were detected in at least one experiment using each separation method to avoid 
biasing the analysis toward proteins incompatible with specific approaches. We 
compared the resulting AUCs using the Brunner–Munzel test as described above. 
Additionally, we extended our multivariable statistical analysis by adding a term 
for the fractionation method to the linear models described above. Separately, 
we sought to identify complexes for which at least three subunits were detected 
exclusively by one method or which were resolved significantly better by one 
method. To address the latter question, we performed a one-tailed t-test comparing 
the AUCs achieved by each fractionation method to those of all other methods (a 
‘one-versus-rest’ comparison) and then corrected for multiple-hypothesis testing 
using the false discovery rate.

Integration of multiple CF-MS replicates. To combine information from 
multiple CF-MS replicates in network inference, we employed a supervised 
machine learning workflow as previously implemented in a number of previous 
studies and software tools9–11,14,17,32,33,72–76. Briefly, within each replicate, a series of 
features indicative of protein complex co-membership were calculated for each 
protein pair. The calculated features were then merged to produce a single feature 
matrix, which was provided to a machine learning classifier as input alongside a 
set of known protein complexes. As in the ROC analysis, proteins belonging to 
the same complex were labeled as true positives, whereas proteins in different 
complexes were labeled as true negatives. The classifier was trained using fivefold 
cross-validation both to minimize overfitting and to allow it to make predictions 
for protein pairs within the training set of known protein complexes. Protein pairs 
were ranked in descending order by their mean classifier score across all five folds, 
and the AUC was calculated as described above.

We considered several variations on this general approach. First, we varied 
both the number and identities of the features provided to the classifier as input. 
Calculating between one and ten features per replicate, we drew features either at 
random from the set of 165 analytical pipelines or in descending order from a list 
of pipelines arranged by their combined AUCs in the protein complex and GO 
term analyses (‘best first’). For best-first features, only the single best combination 
of missing-value handling and chromatogram transformation was retained for any 

given measure of association to avoid repeatedly drawing slightly different versions 
of the same feature. Alternatively, a set of five features computed in the ‘PrInCE’ 
R package was used as input (a single PrInCE feature, the co-apex score, derived 
from fitting a mixture of Gaussians to each chromatogram, was omitted). We 
also attempted to perform a comparison to the EPIC toolkit14 but were ultimately 
unable to perform a fair comparison because the network returned to users by this 
tool is obtained by both training and testing the classifier on the input set of ‘gold 
standard’ complexes (that is, the network is inferred without cross-validation). 
We also varied the total number of CF-MS datasets sampled from a minimum of 
two to a maximum of 40. For each combination of parameters, network inference 
was repeated ten times, each with different samples of CF-MS replicates. Proteins 
quantified in less than four fractions were discarded from each replicate. Protein 
groups were mapped to gene symbols as described above.

We also considered the structure of the cross-validation procedure itself. 
A set of known protein complexes can be separated on the basis of complex 
subunits (proteins) or pairwise interactions between complex subunits (protein 
pairs) as illustrated schematically in Extended Data Fig. 8a. To compare these two 
cross-validation approaches, the set of CORUM protein complexes was converted 
to an adjacency matrix, and the proteins in the row and column names of the 
matrix were split into five folds. Alternatively, the adjacency matrix was converted 
to a pairwise data frame, which was then split into five folds. We then computed 
the difference in the apparent AUC obtained from cross-validation with complexes 
split by protein pairs or by proteins. The difference between the two AUCs was also 
recalculated in an independent held-out set of complexes comprising 30% of the 
CORUM database, which was withheld at the beginning of the experiment.

Other adaptations to the machine learning workflow that were considered 
included the impact of merging matrices from multiple CF-MS replicates before 
feature calculation, leading to a single feature matrix for all replicates. Additionally, 
because the naive Bayes classifier can naturally handle missing values by simply 
excluding them from the likelihood calculation, we compared the impact of 
imputing missing features with their median value versus leaving the missing 
values in place. Because neither of these two adaptations improved performance, 
they were not considered further. Finally, we compared two different classifiers: 
a naive Bayes classifier, which exemplifies a broader category of relatively simple, 
linear classifiers, previously found to perform well with CF-MS data17,24,75,77,78; and 
a random forest classifier, which exemplifies a family of more complex, nonlinear 
classifiers based on decision trees that have also found wide use in CF-MS 
analysis9,11,32,33,73,74. The implementations of these classifiers from the R packages 
‘naivebayes’ and ‘randomForest’ were used, respectively.

To identify pairs of features with synergistic or antagonistic interactions, we 
performed network inference using all pairwise combinations of the 24 measures of 
association. For each measure of association, we considered only the combination 
of missing-value handling strategy and chromatogram transformation that yielded 
the optimal results in the single-dataset setting (that is, we took the row maximum 
from Extended Data Fig. 4 after summing the AUCs obtained for resolving protein 
complexes and pairs of proteins annotated with the same GO term). We used either 
a random forest or a naive Bayes classifier to integrate combinations of three or six 
CF-MS datasets. For each pair of features, we performed network inference from 
ten random samples of CF-MS datasets of the given size, yielding a total of 11,040 
networks. We then fit a linear mixed model with a random effect for the specific 
combination of CF-MS datasets to the AUC of each network, as we found that the 
identities of the datasets chosen for integration had a marked effect on the AUC, 
and tested the statistical significance of the interaction between the two features 
using the ‘lmerTest’ R package to optimize the restricted maximum likelihood and 
obtain P values from the Satterthwaite approximation for degrees of freedom. To 
identify reproducible interactions, we tallied the number of times a synergistic 
or antagonistic interaction was detected in the four evaluation scenarios (two 
classifiers, three or six datasets); we did not identify any discordant interactions. To 
compare networks inferred from combinations of human SEC and IEX datasets, 
we trained a random forest classifier on the six top-performing features from each 
dataset, drawing a total of 20 random samples for each total number of datasets 
and proportion of SEC datasets.

Downsampling analysis of training set complexes. To estimate the minimum 
number of protein complexes required for robust network inference in species 
in which few protein complexes may be known, we repeated the analyses of 
multiple CF-MS replicates after downsampling the CORUM database to include 
between 5% and 100% of complex proteins. For this analysis, we considered only 
combinations of two to four replicates, computing the six ‘best-first’ features in 
each replicate. As described above, network inference was repeated ten times for 
each combination of parameters, drawing a new sample of CF-MS replicates each 
time, and these samples were held constant throughout the downsampling of 
CORUM. Because the range of AUC values that could be obtained was found to 
vary strongly with the specific replicates selected, AUCs were rescaled to the range 
[0, 1] for each combination of replicates to enable comparison of saturation curves 
across the ten samples.

Inference and validation of a consensus human interactome by CF-MS. To infer 
a consensus human interactome by CF-MS, we combined information from all 

NAtuRe MethodS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNaturE MEtHODS

46 CF-MS datasets using tenfold cross-validation and testing a slightly expanded 
set of classifiers, including logistic regression72 and support-vector machines10,14. 
A single ‘best-first’ feature was calculated from each replicate. Networks were also 
inferred from samples of between two and 45 CF-MS replicates, as well as from 
each individual replicate in turn.

To evaluate the potential of large-scale CF-MS analysis for interactome 
mapping, the consensus CF-MS interactome derived from integration of all 46 
human datasets was compared to five recently published systematic screens of the 
human interactome: three achieved using AP–MS3–5 and two achieved using Y2H1,2. 
Networks were first compared on the basis of their precision, as calculated based 
on the CORUM database, and the total number of interactions identified. Next, we 
computed the functional coherence of each network, defined as the degree to which 
the function of any given protein can be predicted from those of its interacting 
partners, based on the principle of ‘guilt by association’ (refs. 36,79). Briefly, each 
protein in the network is annotated with its known functions (here, GO terms), and 
a subset of these labels are then withheld. A simple neighbor-voting algorithm80 
is then used to predict functions for the withheld proteins by assigning a score for 
each GO term that represents the proportion of the protein’s interacting partners 
annotated with the same term. This process is repeated in threefold cross-validation, 
and the mean AUC over cross-validation folds is computed for each GO term. 
A high AUC is characteristic of networks in which proteins that share biological 
functions tend to be physically connected. Functional coherence analysis was carried 
out using the ‘EGAD’ R package36, filtering GO terms annotated to less than ten or 
more than 100 proteins as described above. We additionally compared networks 
based on the tendency for interacting proteins to display correlated patterns of 
abundance in two large-scale proteomic datasets20,37 and to colocalize to the same 
subcellular compartments in two subcellular proteomic datasets38,39. Both protein 
coexpression and colocalization were quantified using the Pearson correlation.

Inference of CF-MS interactomes for 27 species or clades. Finally, we carried 
out a similar analysis to integrate CF-MS experiments from other non-human 
species or across multiple species simultaneously for broad phylogenetic groups 
such as mammals or tetrapods. For these analyses, protein groups were mapped to 
eggNOG orthogroups in the ‘euk’ database using the eggnog-mapper tool (version 
1.0.3)81. Proteins that mapped to more than one orthogroup were discarded, 
and profiles were constructed for each orthogroup by summing protein groups 
mapping to that orthogroup. As in the consensus human interactome, random 
forest classifiers were trained with a single ‘best-first’ feature per replicate. 
Functional coherence was evaluated by mapping UniProt accessions in GOA files 
to eggNOG orthogroups. The phylogenetic tree was obtained from TimeTree82.

Visualization. Throughout the text, box plots show the median (horizontal line), 
interquartile range (hinges) and smallest and largest values no more than 1.5 times 
the interquartile range (whiskers).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
A list of all raw mass spectrometry files analyzed in this study and their accession 
numbers in PRIDE or MassIVE repositories is provided in Supplementary Table 1.  
All data generated in this study are available at multiple levels of analysis from 
the following sources: protein chromatograms and protein–protein interaction 
networks for up to ten proteins can be visualized and downloaded via an interactive 
web application at http://cf-ms-browser.msl.ubc.ca; processed chromatograms and 
MaxQuant proteinGroups.txt files are available via Zenodo at https://doi.org/10.5281/
zenodo.4499320; complete MaxQuant outputs for all 206 experiments were deposited 
to the PRIDE repository83 with the dataset identifier PXD022048; predicted 
interactomes for 27 species and clades, including the consensus human CF-MS 
interactome, are available via Zenodo at https://doi.org/10.5281/zenodo.4245282. An 
overview of all publicly available resources generated in this study is provided at the 
supporting website (https://fosterlab.github.io/CF-MS-analysis).

Code availability
Source code used to download and reanalyze publicly available CF-MS data 
using MaxQuant is available at https://github.com/skinnider/CF-MS-searches 
(https://doi.org/10.5281/zenodo.4774750). Source code used to carry out analyses 
presented in the paper, with relevant intermediate data files, is available at https://
github.com/skinnider/CF-MS-analysis (https://doi.org/10.5281/zenodo.4774754). 
Source code for the CF-MS browser web application is available at https://github.
com/skinnider/CF-MS-browser (https://doi.org/10.5281/zenodo.4774752). The 
CFTK R package is available at https://github.com/fosterlab/CFTK (https://doi.
org/10.5281/zenodo.4774771).
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Extended Data Fig. 1 | A uniformly processed resource of CF–MS data. a, Approaches to protein quantification employed by published CF–MS 
experiments. SILAC, stable isotope labelling by amino acids in cell culture; iBAQ, intensity-based absolute quantification. b, Proportion of the organismal 
proteome quantified in each CF–MS experiment (grey lines, individual datasets; blue line, mean across all datasets). c, Cumulative distribution of the 
number of proteins quantified per dataset in between one and 25 fractions. d, GO term enrichment among CORUM proteins detected in at least one  
CF–MS fraction, left, or never detected, right. e, PaxDb consensus protein abundance of mouse proteins detected or never detected by CF–MS. f, Coverage 
of high, moderate, and low abundance proteins (expressed as a mean proportion of fractions in which these proteins were detected) in published human 
CF–MS experiments (n = 46). g, As in f, but with CF–MS experiments divided into three groups based on the length of the liquid chromatography 
gradient. ***, p < 0.001, two-sided Spearman rank correlation. h, PaxDb consensus protein abundance of human proteins in the CORUM database and 
non-CORUM proteins. i, Difference in the number of protein groups quantified in each CF–MS experiment, compared to the processed chromatogram data 
accompanying the original publications (grey lines, individual datasets; blue line, mean across all datasets).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Benchmarking computational analysis of individual CF–MS datasets. a, Measures of association used to quantify the similarity 
of two protein chromatograms in published CF–MS studies. Bottom row indicates the incorporation of external genomic datasets77. b, Ranks of each 
measure of association in identifying protein pairs in the same protein complex, left, or annotated to the same GO term, right, across individual CF–MS 
datasets. c, Number of peaks detected in 20 CF–MS datasets by fitting a mixture of Gaussians to each protein chromatogram. d, Recovery of known 
protein complexes in the 20 CF–MS datasets from c, scoring only chromatograms that could be fit with a mixture of Gaussians (r2 ≥ 0.5) and comparing 
the 24 different measures of association shown in Fig. 2 with the co-apex score. Inset text shows the median AUC for each measure of association. e, As in 
d, but for proteins annotated to the same GO term. f, Recovery of known protein complexes, top, and proportion of originally quantified proteins, bottom, 
when filtering profiles not detected in some minimum number of fractions, using mutual information as a measure of profile similarity. g, Mean number 
of protein groups identified, top, and recovery of proteins annotated to the same GO term, bottom, for three approaches to label-free quantification 
implemented in MaxQuant.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | univariate statistical analysis of computational approaches to individual CF-MS datasets. a, Difference in the median protein 
complex AUC between each pair of measures of association. Asterisks indicate pairs of measures of association with a p-value less than 0.05 in a two-
sided Brunner-Munzel test. The difference in median AUCs is capped at [–0.1, +0.1] to improve visualization. b, As in a, but for GO terms. c, Difference 
in the median protein complex AUC between each pair of missing value handling strategies. Asterisks indicate pairs of measures of association with a 
p-value less than 0.05 in a two-sided Brunner-Munzel test. d, As in c, but for GO terms. e, Difference in the median protein complex AUC between each 
pair of chromatogram normalization approaches. Asterisks indicate pairs of measures of association with a p-value less than 0.05 in a two-sided Brunner-
Munzel test. f, As in e, but for GO terms. g, Difference in the median protein complex AUC between each pair of measures of association, considering 
only the single best combination of missing value handling and chromatogram normalization for each measure of association. Asterisks indicate pairs of 
measures of association with a p-value less than 0.05 in a two-sided Brunner-Munzel test. h, As in g, but for GO terms. i, Median difference in the protein 
complex AUC between matched datasets with label-free protein quantification performed by one of three algorithms within MaxQuant. Asterisks indicate 
pairs of measures of association with a p-value less than 0.05 in a two-sided paired Brunner-Munzel test. j, As in i, but for GO terms.

NAtuRe MethodS | www.nature.com/naturemethods
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Machine learning workflows for the integration of multiple CF–MS replicates. a, Schematic overview of cross-validation 
approaches for CF–MS data. b, Comparison of cross-validation by protein pairs or individual proteins in network inference from two to four CF–MS 
experiments using a naive Bayes classifier, with AUCs calculated in cross-validation or in an independent set of held-out protein complexes. c, Impact 
of feature selection on network inference from two to four CF–MS experiments, comparing between one and six top-performing features, an equivalent 
number of random features, or five features computed in PrInCE. d, Comparison of top-performing or random features in network inference from two 
to ten CF–MS experiments, using between one and ten top-performing features. e, Comparison of network inference with features calculated from 
concatenated matrices of two to four CF–MS experiments, or with features calculated from individual experiments. f, Comparison of network inference 
from two to four CF–MS experiments using a naive Bayes classifier before and after median imputation of missing values. g, Impact of the number of top-
performing or random features provided as input on network inference from two to ten CF–MS experiments. h, Comparison of random forest and naive 
Bayes classifiers in network inference from two to ten CF–MS replicates, using between one and ten features. i, Network inference from human CF–MS 
data when integrating varying proportions of SEC and IEX experiments. The total number of CF–MS datasets is shown above the plots, and the number of 
SEC datasets is shown on the x-axis.
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Extended Data Fig. 9 | See next page for caption.

NAtuRe MethodS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNaturE MEtHODS

Extended Data Fig. 9 | Synergistic and antagonistic feature combinations in network inference from CF–MS data. a, Performance (AUC, left, and rank, 
right) of naive Bayes and random forest classifiers trained on 24 measures of association in network inference from combinations of between two and 
six CF–MS datasets. Each cell reflects the mean AUC from 10 random combinations of datasets. b, Summary of synergistic and antagonistic interactions 
between features in CF–MS network inference, as shown in detail in panels c–f. Fill reflects the number of times a synergistic (magenta) or antagonistic 
(cyan) interaction was detected between two features. Network inference was performed using all possible combinations of 24 measures of association 
from ten random combinations of three or six CF–MS datasets, using either a random forest or naive Bayes classifier. Rows and columns are arranged by 
the mean performance of individual features across all combinations shown in a (both classifiers, two to six datasets). c, Performance (AUC) of networks 
inferred from combinations of three CF–MS datasets using a random forest classifier. Rows and columns are arranged by the mean performance of 
individual features in the same scenario. Text highlights significantly synergistic (+) and antagonistic (–) interactions. Each cell shows the mean AUC from 
10 random combinations of datasets. d, As in c, but using a naive Bayes classifier. e, As in c, but for networks inferred from combinations of six CF–MS 
datasets. f, As in c, but for networks inferred from combinations of six CF–MS datasets, using a naive Bayes classifier.
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Extended Data Fig. 10 | Saturation analysis of network inference from CF–MS data. a, Saturation analysis of network inference from two to 40 CF–MS 
experiments, using variable numbers of top-performing features. Boxplots show n = 10 independent samples. b, Impact of downsampling training set 
complexes on network inference from two to four CF–MS replicates.
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